Scatter factor/hepatocyte growth factor stimulation of glioblastoma cell cycle progression through G(1) is c-Myc dependent and independent of p27 suppression, Cdk2 activation, or E2F1-dependent transcription.

نویسندگان

  • Kevin A Walter
  • Mir Ahamed Hossain
  • Carey Luddy
  • Nidhi Goel
  • Thomas E Reznik
  • John Laterra
چکیده

Scatter factor/hepatocyte growth factor (SF/HGF) expression has been linked to malignant progression in glial neoplasms. Using two glioma cell lines, U373MG and SNB-19, we have demonstrated that SF/HGF stimulation allows cells to escape G(1)/G(0) arrest induced by contact inhibition or serum withdrawal. SF/HGF induced effects on two mechanisms of cell cycle regulation: suppression of the cyclin-dependent kinase inhibitor p27 and induction of the transcription factor c-Myc. Regulation of p27 by SF/HGF was posttranslational and is associated with p27 nuclear export. Transient transfections of U373MG and SNB-19 with wild-type p27 and a degradation-resistant p27T187A mutant were insufficient to induce cell cycle arrest, and SF/HGF downregulation of p27 was not necessary for cell cycle reentry. Analysis of Cdk2 kinase activity and p27 binding to cyclin E complexes in the presence of exogenous wild-type p27 or p27T187A demonstrated that Cdk2 activity was not necessary for SF/HGF-mediated G(1)/S transition. Similarly, overexpression of dominant-negative forms of Cdk2 did not block SF/HGF-triggered cell cycle progression. In contrast, SF/HGF transcriptionally upregulated c-Myc, and overexpression of c-Myc was able to prevent G(1)/G(0) arrest in the absence of SF/HGF. Transient overexpression of MadMyc, a dominant-negative chimera for c-Myc, caused G(1)/G(0) arrest in logarithmically growing cells and blocked SF/HGF-mediated G(1)/S transition. c-Myc did not exert its effects through p27 downregulation in these cell lines. SF/HGF induced E2F1-dependent transcription, the inhibition of which did not block SF/HGF-induced cell cycle progression. We conclude that SF/HGF prevents G(1)/G(0) arrest in glioma cell lines by a c-myc-dependent mechanism that is independent of p27, Cdk2, or E2F1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct role of cAMP and cGMP in the cell cycle control of vascular smooth muscle cells: cGMP delays cell cycle transition through suppression of cyclin D1 and cyclin-dependent kinase 4 activation.

cAMP and cGMP are known to suppress vascular smooth muscle cell (SMC) proliferation. In this study, our aim was to delineate the molecular mechanism underlying cAMP and cGMP suppression of cell cycle transition in human SMCs. cAMP inhibits both platelet-derived growth factor-stimulated cyclin-dependent kinase (cdk) 2 and cdk4 activation through upregulation of the cdk2 inhibitor p27(Kip1) and d...

متن کامل

MYC Modulation around the CDK2/p27/SKP2 Axis

MYC is a pleiotropic transcription factor that controls a number of fundamental cellular processes required for the proliferation and survival of normal and malignant cells, including the cell cycle. MYC interacts with several central cell cycle regulators that control the balance between cell cycle progression and temporary or permanent cell cycle arrest (cellular senescence). Among these are ...

متن کامل

Induction of UGT1A1 and CYP2B6 by an antimitogenic factor in HepG2 cells is mediated through suppression of cyclin-dependent kinase 2 activity: cell cycle-dependent expression.

Hepatocyte growth factor (HGF), an antimitogenic factor for HepG2 cells, increased mRNA and protein levels of UGT1A1 and CYP2B6, as well as the endogenous cyclin-dependent kinase (CDK) inhibitors p16, p21, and p27 in HepG2 cells but not in HuH6, Caco2, or MCF7 cells. Treatment with 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) (an extracellular signal-regulated kinase inhibitor) ...

متن کامل

Epidermal growth factor receptor-dependent regulation of integrin-mediated signaling and cell cycle entry in epithelial cells.

Integrin-mediated adhesion of epithelial cells to extracellular matrix (ECM) proteins induces prolonged tyrosine phosphorylation and partial activation of epidermal growth factor receptor (EGFR) in an integrin-dependent and EGFR ligand-independent manner. Integrin-mediated activation of EGFR in epithelial cells is required for multiple signal transduction events previously shown to be induced b...

متن کامل

Bcl-2 retards cell cycle entry through p27(Kip1), pRB relative p130, and altered E2F regulation.

Independent of its antiapoptotic function, Bcl-2 can, through an undetermined mechanism, retard entry into the cell cycle. Cell cycle progression requires the phosphorylation by cyclin-dependent kinases (Cdks) of retinoblastoma protein (pRB) family members to free E2F transcription factors. We have explored whether retarded cycle entry is mediated by the Cdk inhibitor p27 or the pRB family. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 22 8  شماره 

صفحات  -

تاریخ انتشار 2002